

Liberté Égalité Fraternité

Formation des commissaires enquêteurs – ICPE

# DÉCRYPTAGE DES ÉTUDES D'IMPACT ET RÔLE DE L'ÉVALUATION ENVIRONNEMENTALE

Pascal Mallard – service CoPrEv (appui à l'autorité environnementale) autorite-environnementale.bretagne@developpement-durable.gouv.fr



#### Sommaire

 Évaluation environnementale, étude d'impact, autorité environnementale, autorisation environnementale... et quelques chiffres

- Bien appréhender le « projet », son contexte, sa consistance, ses conséquences
- Les « solutions de substitution raisonnables », au cœur de la démarche
- La technicité des dossiers, oui mais... au service d'une démonstration (de maîtrise des incidences)

- Pollutions diffuses, ammoniac, effet de serre... effets cumulés, induits, indirects
- Quelques autres enjeux : maîtrise des risques, prévention des nuisances, paysage, état écologique des milieux aquatiques, ressource en eau...



#### Évaluation environnementale



- Définitions et principes : cf. L122-1 code env.
- Entre démarche (« intégration » environnementale) et processus de participation du public et de maîtrise des incidences notables
- Liée au « projet » mais portée par une (ou plusieurs) procédure(s) d'« autorisation » (pour les projets, à la différence des plans/programmes) → la décision de l'« autorité compétente » est motivée, prescrit les mesures ERC et les modalités de suivi (cf. L122-1-1 et R122-13 code env.)
- Norme (réglementation) ≠ évaluation
  - une mesure réglementaire peut être une mesure « ERC »
  - la norme peut ne pas suffire
  - l'EE ne porte que sur les incidences notables (cf. effets cumulés)

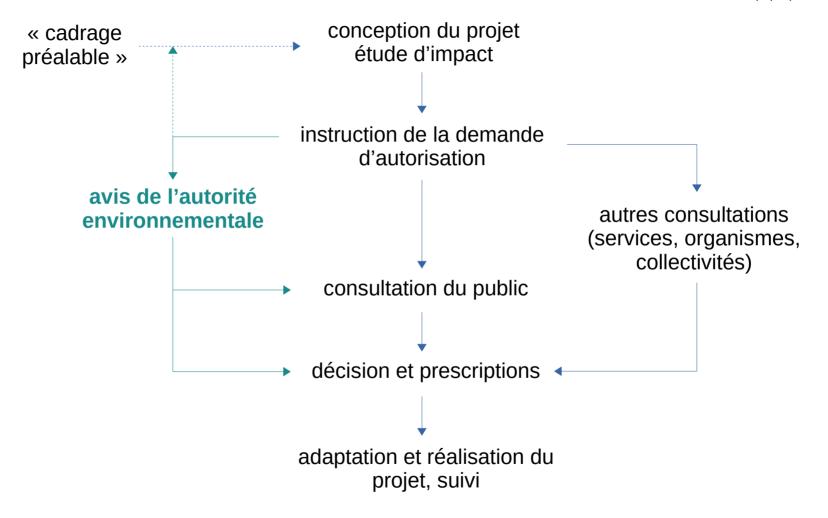
ex. couverture de fosse ex. bruit, odeurs : entre obligation de moyens, obligation de résultats, norme d'exposition, perception...



# Étude d'impact = rapport d'évaluation des incidences sur l'environnement

- Son objet : assurer l'information du public sur les incidences du projet et leur maîtrise
- Au-delà du formalisme imposé (R122-5 code env.), elle rend compte de la démarche d'intégration environnementale
   → proportionnée, « efficace »
- Logique sous-jacente, depuis la conception du projet jusqu'au suivi a posteriori, sans oublier l'efficacité attendue des mesures ERC

ex. « cumul des incidences » (cf. évolutions de rédaction du R122-5)



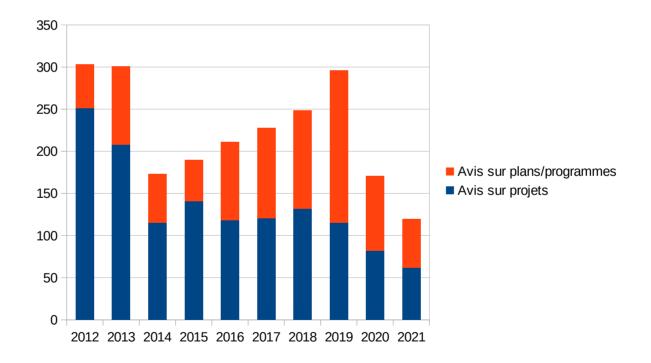

#### Autorité environnementale : le « tiers garant »

- Cf. illustration diapo suivante
- Identité de l'Ae : MRAe (mission régionale d'autorité environnementale de Bretagne), parfois Ae du CGEDD...
- Au sein de la DREAL, un « service d'appui » sous l'autorité fonctionnelle de la MRAe
- Enjeu de visibilité et lisibilité des avis de l'Ae ?
- La réponse écrite du maître d'ouvrage à l'avis de l'Ae (cf. L122-1 V et VI code env.), une fausse bonne idée ?

ex. (entre autres !) : extension de LODI à Grand-Fougeray (travaux anticipés, retombée des fumées d'incendie...)

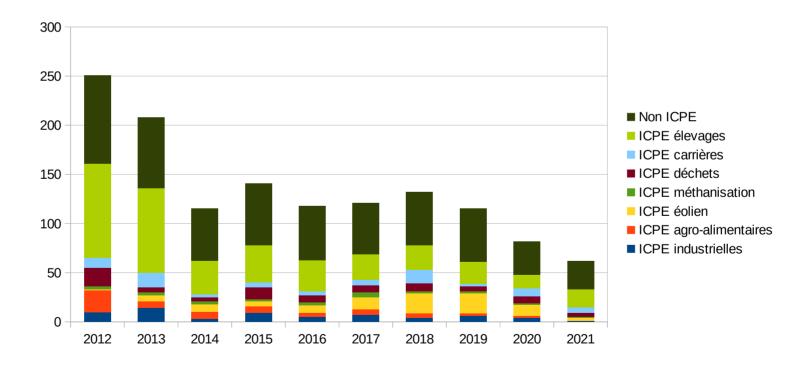







#### Autorisation environnementale = une procédure d'autorisation

- La procédure d'autorisation dédiée aux ICPE (et IOTA), issue de l'« autorisation unique » (expérimentale)
- « Embarque » les autorisations de défrichement, de travaux en site classé, la dérogation à la protection des espèces...
- Articulée avec les autorisations d'urbanisme (permis de construire...)
- Intègre une « phase amont » formalisée




### Nombre d'évaluations environnementales en Bretagne





#### Nombre d'EE sur projets en Bretagne (ICPE et autres)





#### Entre périmètre du projet et périmètre d'analyse

- Flux amont et aval, opérations liées... où s'arrête le « projet », jusqu'où évaluer ses effets induits ? Critères de ce qui est significatif, de ce qui dépend des choix du maître d'ouvrage.
- Ex. approvisionnement, épandage, traitement des déchets, transport, sites de production associés, changement d'affectation des terres...
  - déplacement ou restructuration (activité, élevage) et effets générés ou évités
  - élevage : quid de la mise en œuvre des bonnes pratiques agricoles dans l'utilisation agronomique des effluents ? Conventions d'épandage.
  - élevage ou agro-alimentaire : quid du compostage des effluents ou des déchets organiques
  - destination des broyats issus d'une installation de tri et traitement de DEEE
  - trafic lié à une carrière (ou traitement de déchets, logistique...) : nuisances ; quid pour les émissions de GES ?
  - méthanisation : digestat vs effluents d'élevage ; cultures dédiées et changement d'usage des terres (ex. Oudon Biogaz)



#### Projets concernant des installations existantes

- État initial, actuel, autorisé... l'important est que ce soit clair, et correctement décrit!
- Caractérisation des incidences dans l'état existant (voire passé), et de la façon dont elles évolueront avec le projet
- Ex. nuisances, rejets liquides et qualité du milieu récepteur, suivis de biodiversité...
- Cas de travaux « anticipés » :
  - unité de méthanisation (ex. EARL de Bot Fao à Plougar)
  - réalisation du bâtiment et infrastructures, avant extension des activités (ex. LODI à Grand-Fougeray, EARL Ty Lez à Coëtlogon)



## La justification environnementale des choix, centrale dans l'étude d'impact

- Localisation, mais pas seulement → dimensionnement, choix techniques déterminants (sur les flux amont et aval, les procédés...)
- Sur la base notamment d'une « comparaison des incidences sur l'environnement et la santé humaine »
- Traduire la réalité des choix, explorer l'ensemble des possibles
- Solutions de substitution / opportunité, solutions de substitution / mesures ER(C) : des frontières imprécises
- Exemples:
  - localisation d'un parc éolien, nombre d'éoliennes et variantes d'implantation
  - système d'élevage, type de bâtiment, traitement de l'air



#### La dimension technique des dossiers ICPE

- Une technicité inévitable (pour les ICPE mais pas seulement) : procédés, méthodes d'évaluation, mesures ERC... mais en général explicable (cf. maître d'ouvrage, bureau d'études, service IIC, avis Ae...) et n'empêche pas une Ei claire
- Des outils mal utilisés ou à mauvais escient peuvent donner des résultats faux ou non représentatifs! Le choix de l'outil, les hypothèses prises (y compris ce qui est pris en compte ou non) sont à expliciter et justifier. Les résultats doivent être interprétés quant à leur signification, leur sensibilité aux hypothèses, leur précision...

#### Illustrations:

- le dimensionnement du plan d'épandage pour des effluents d'élevage ou des digestats, au regard de la limitation des pollutions diffuses
- les calculs de dilution d'un rejet dans un cours d'eau
- les calculs/modélisations/mesures en matière de bruit, d'odeurs → associer les riverains !
- les bilans GES (termes du bilan, DIGES, GEEP...)
- les études de dangers (ex. LODI), les évaluations des risques sanitaires (ex. élevages)



#### Mesures de bruit réalisées pour l'exploitation de M. HERVE Thomas :

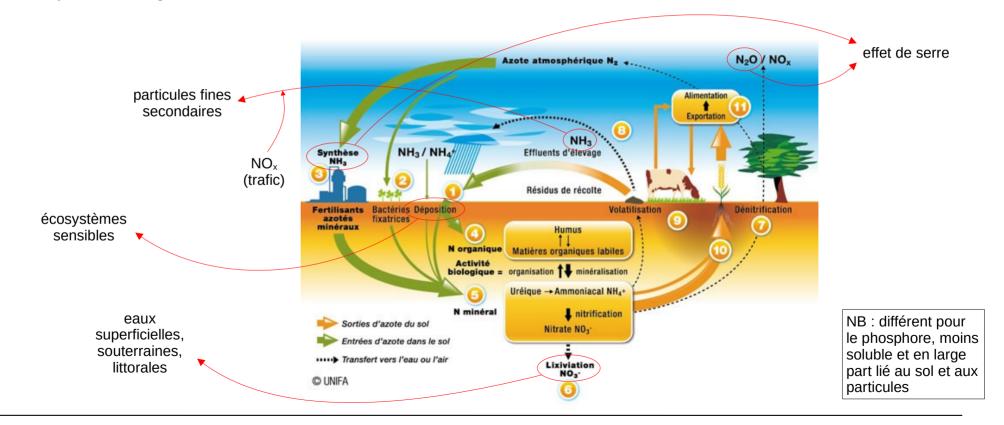
Date des mesures : 2 juillet 2021 – matin Appareil de mesure : TROTEC SL 400

# Exemple: bruit

| Li                                | ieu du point d<br>mesure         | le                    | Photo/mesure       | Valeur mesurée    | Commentaires                                                |  |
|-----------------------------------|----------------------------------|-----------------------|--------------------|-------------------|-------------------------------------------------------------|--|
|                                   | ord de l'accès<br>du poulaille P |                       |                    | Valeur à 46,2 db. | Ventilation du<br>poulailler P1 et<br>chant des<br>oiseaux. |  |
| au sonore<br>eu par le<br>s en dB | Type de Bruit                    | Fréquence             |                    | Valeur à 47,6db.  | Ventilation du<br>poulailler du P1,<br>chant des            |  |
| 36,5                              | Temporaire                       | 2 à 3 fois / jour     |                    |                   | oiseaux.                                                    |  |
| 45,5                              | Permanent                        |                       | THE REAL PROPERTY. |                   |                                                             |  |
| 56,5                              | Temporaire                       | 2 camions par<br>mois |                    |                   |                                                             |  |
| 60                                | Temporaire                       | 1 fois par semaine    |                    |                   |                                                             |  |
| 15.5                              | Dormonont                        |                       |                    |                   |                                                             |  |

Niveau Distances Niveau Atténuation par Source de bruit sonore à 10 aux tiers perçi la distance en dB m en dB en m tiers Distribution d'aliment 60 161 m 23,5 Poulaillers 69 23,5 161 m Livraisons d'aliment 80 178 m 23,5 Camions, tracteurs en 80 118 m 20 transit Ventilateurs 69 23,5 161 m 45,5 Permanent En cas de panne ou Groupe électrogène 72 40 m 12 60 Temporaire coupure EDF

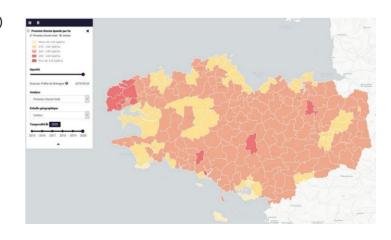
Tableau 10 : Répartition des sources de bruits et fréquences sur le site « Coldabry »




# Exemple : rejet en cours d'eau

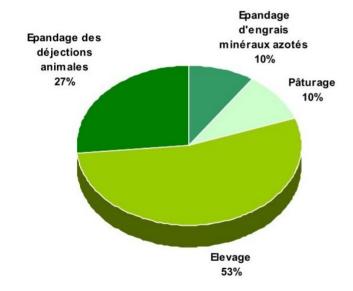
|           | Concentrations théoriques du milieu récepteur |                       |        |         |                        |         |         |          |         |         |
|-----------|-----------------------------------------------|-----------------------|--------|---------|------------------------|---------|---------|----------|---------|---------|
|           | DBO5                                          | DCO                   | MES    | NTK     | N-NH <sub>4</sub>      | NGL     | Pt      | E. Coli  | Étiage? | Débit S |
|           | (mgO <sub>2</sub> /L)                         | (mgO <sub>2</sub> /L) | (mg/L) | (mgN/L) | (mgNH <sub>4</sub> /L) | (mgN/L) | (mgP/L) | (ufc/100 | (OUI/NO | (m³/jc  |
| Janvier   | 2,2                                           | 11,6                  | 3,1    | 0,9     | 0,17                   | 1,48    | 0,08    | 17       | NON     | 346     |
| Février   | 2,1                                           | 11,4                  | 3,0    | 0,8     | 0,15                   | 1,40    | 0,07    | 17       | NON     | 346     |
| Mars      | 2,1                                           | 11,5                  | 3,1    | 0,8     | 0,16                   | 1,42    | 0,07    | 17       | NON     | 283     |
| Avril     | 2,2                                           | 11,7                  | 3,1    | 0,9     | 0,17                   | 1,50    | 0,08    | 18       | NON     | 233     |
| Mai       | 2,1                                           | 11,5                  | 3,1    | 0,8     | 0,16                   | 1,43    | 0,08    | 17       | NON     | 158     |
| Juin      | 2,5                                           | 12,3                  | 3,4    | 1,0     | 0,22                   | 1,79    | 0,10    | 20       | OUI     | 148     |
| Juillet   | 2,8                                           | 13,1                  | 3,7    | 1,2     | 0,28                   | 2,19    | 0,13    | 24       | OUI     | 128     |
| Août      | 3,2                                           | 13,9                  | 4,0    | 1,4     | 0,34                   | 2,55    | 0,16    | 28       | OUI     | 128     |
| Septembre | 3,4                                           | 14,4                  | 4,2    | 1,5     | 0,37                   | 2,78    | 0,17    | 30       | OUI     | 128     |
| Octobre   | 2,8                                           | 13,0                  | 3,6    | 1,2     | 0,27                   | 2,13    | 0,13    | 24       | OUI     | 128     |
| Novembre  | 2,1                                           | 11,5                  | 3,1    | 0,8     | 0,16                   | 1,44    | 0,08    | 17       | NON     | 128     |
| Décembre  | 2,1                                           | 11,4                  | 3,0    | 0,8     | 0,15                   | 1,39    | 0,07    | 16       | NON     | 233     |
| QMNA5     | 3,4                                           | 14,5                  | 4,2    | 1,5     | 0,38                   | 2,82    | 0,18    | 30       | OUI     | 128     |



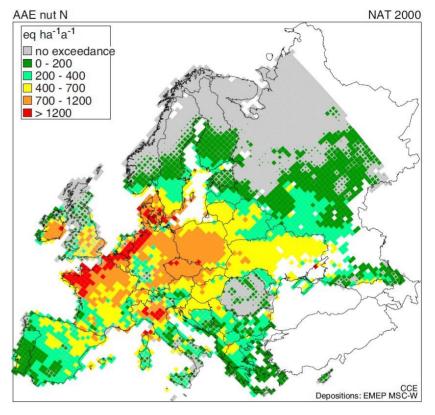

#### Exemple du cycle de l'azote : effets cumulés, indirects, évités...






#### Pollution diffuse azotée liée à la fertilisation des cultures

- SAGE, bassins versants « algues vertes » → quelle contribution du projet aux objectifs de réduction des flux ?
- Qu'attendre de l'étude d'impact en pratique ?
  - données de contexte à échelle BV (cf. visualiseur Equinoxe)
  - comparaison entre situations avant et après (y compris effets induits, assolement...)
  - conditions d'une bonne utilisation des effluents (ex. spécificité des digestats)
  - mise en œuvre des bonnes pratiques agricoles (fertilisation, culturales...)?
    Cultivateur / éleveur. Cas d'un traitement collectif intermédiaire (ex. GAEC du Bois d'Araize à Martigné-Ferchaud).
  - ammoniac : aller au-delà de la norme ?






#### **Ammoniac**



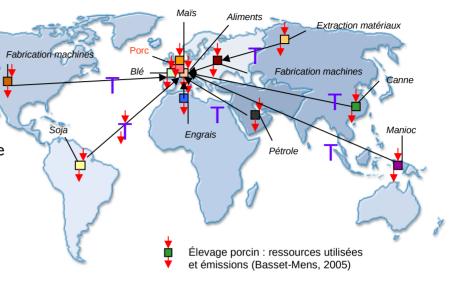
Émissions agricoles d'ammoniac en Bretagne en 2008 Source : Air Breizh, 2012

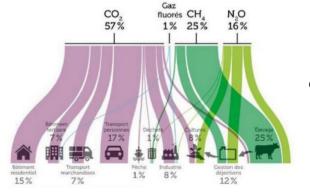


Dépassement des charges critiques en azote nutritif en 2000 (1200 eq /  $58.8 = 20.4 \text{ kg NH}_3$ )

Voir: https://www.citepa.org/fr/aepp/et https://isea.airbreizh.asso.fr/




#### Effet de serre, effets globaux


Agriculture : presque moitié des émissions <u>directes</u> en Bretagne

 Bilan GES, bilan carbone®... DIGES, GEEP... Attention à la méthode – cf. principes de l'ACV

 Centre de ressource Ademe (dont guides sectoriels) : https://bilans-ges.ademe.fr/

- Qu'attendre de l'étude d'impact :
  - une bonne analyse qualitative, une approche « proportionnée »
  - identifier et quantifier les principaux postes (autant que possible, y compris émissions induites, évitées...), explorer les mesures ER accessibles → « faire sa part »
- Autres effets globaux : pollution chimique, cycles N et P, ressources... (cf. limites planétaires)





Émissions directes de GES en Bretagne en 2010 (extrait de l'avis Ae sur SRADDET)



- Maîtrise des **risques** : dans le champ de l'EE / y compris les risques pour l'environnement / à l'exclusion des risques pour le personnel
- Prévention des **nuisances** : importance d'associer les riverains / méthodes quantitatives existent mais délicates à mettre en œuvre / y compris transport
- Paysage: paysage perçu, cadre de vie / transformation vs impact, qualité paysagère (à rechercher voire améliorer) vs ERC / bien mettre en évidence les incidences, analyse des principaux points de perception
- Rejets en cours d'eau : s'inscrire dans les objectifs d'amélioration / analyser l'impact, ne pas se limiter à un calcul de dilution / tenir compte des effets de cumul / mesures de compensation à défaut d'E et R
- Ressource en eau : un réel enjeu en Bretagne (réserves faibles) surtout moitié est / à raisonner en termes d'incidences y compris pour les milieux / mais pas facile à appréhender à l'échelle d'un projet hors effets locaux (effets cumulés, interconnexions AEP)